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Introduction

Consider a single-particle Schrödinger Hamiltonian for a perfect
quasicrystalline potential:

H = −∆ + U

There are two points of view:

I Global analysis: One has first to define the Hilbert space and
the domain. The main results are gap labelling theorems
(Bellisard).

I Local analysis: consider a PDE Hψ = Eψ, look for the
solutions ψ (and fix the boundary conditions later. . . ). The
main results are about spectra and (generalized) eigenstates
for one dimensional potentials by the technique of trace map
(Kohmoto, Sütő).

We adopt the local approach. . .



Motivation
. . . an ansatz is an educated guess . . . (Wikipedia)

All known analytical solutions of the eigenstate problem in perfect
quasicrystals in more than one dimension are (educated) guesses:

Quasi-Bloch
states

Sutherland ‘86 All perfect 
“quasicrystalline” 

potentials

These functions... are eigenstates of:

The present work Is the remaining 
set empty?



A perfect QC potenial?

I The näıve cut (-and-project) approach:

U(x) = u(α(x)),

where α is an irrational winding

α : Rn → TN

and u is a (discontinuous?!) function on TN .

I Less näıve way: start with the Hull Ω

Rn µ−→ Ω
ε−→ TN ,

and define the potential as a pullback:

U(x) = u(µ(x)),

where u is a continuous function on Ω. In other words, U(x)
is weakly pattern equivariant.
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What’s wrong with quasi-Bloch states?

I An electron with a momentum ~k can only be scattered by a
quasi-lattice momentum ~k{n}:

ψ(x, t) =
∑
n

c{n}(t) exp
(
i(k + k{n})x

)
The quasi-Bloch states are just stationary solutions of the
above. They always exist, don’t they?

I Not necessarily! If the Fourier harmonics Ũ(k{n}) decay
slowly, the electron is delocalized in the momentum space.
And this is what happens in the most interesting case of a QC
with matching rules (Kitaev ’89):

Ũ(k{n}) ∼ 1/|k{n}⊥|
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(Quasi-)Bloch functions revisited

I Let us look for the solutions in the following form:

ψ(x) = exp(f )ψ0 (α(x)) ,

where ψ0 be a continuous function on Ω. One has

∆ψ = exp(f )
(
∆ψ0 + 2∇ψ0∇f + ∆f + (∇f )2

)
If ∇f is weakly PE (and we are lucky enough), ψ is a solution
for the stationary Schrödinger equation for some (real!)
weakly PE U.

I Note that exp(f ) is actually defined up to a weekly PE factor,
which can always be absorbed by ψ0. The non-trivial solutions
should be classified by cohomologies of Ω! But by which
ones?. . .
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Approximating the Hull by a finite CW complex

Krafting the Hull out of TN with scissors:

L

Two singular patterns containing 

a “worm” at the distance L 

from the origin

The figure depicts the space XD = TN\YD obtained by the
removing the D-neighborhood YD of the “worms’ from TN (and
completion w.r.t. the inner metric).



Approximating the Hull by a finite CW complex

Let us consider the inverse limit of the sequence of natural
inclusions

X→ · · · → XDm+1 → XDm → XDm−1 · · ·

Theorem (PK 2004): for the almost canonical tilings, the Hull Ω is
homeomorphic to X.
In the most important cases (e.g. patterns with strong matching
rules) the sequence stabilizes (in the sens of homotopy
equivalence) at some term, which can be considered as an
approximation of the Hull:

Ω
εD−→ XD

Since XD is a smooth manifold with boundary, one can work with
de Rham cohomology. . .



The Ansatz

Let ω be a closed C-valued 1-form on XD . Its pullback by the
(differentiable) map µD = εDµ is exact:

µ∗Dω = df

Lel ψ0 be a (smooth enough) function Ω→ C. Then the ansatz
for the eigenstate has the following form:

ψ(x) = exp(f )ψ0 (µ(x))

This expression is actually parametrized by the class of ω in
H1(XD ,C) only. The latter plays therefore the role of Bloch
quasimomentum.



How does it look in the real space?

Switching of the “worm”:

x

j

The wavefunction at the left side is multiplied by exp
(∮

Γ ω
)

for
some contour Γ encircling YD .



Relation to Sutherland’s wavefunction

Sutherland observed that the standard arrows of Penrose tiling
form an irrotational (co)vector field. The similar construction
exists for Ammann tiling — and one can see that Sutherland’s field
has a non-trivial cohomology class in H1(TN\YD).

A

A

Exhibit Ammann tiling / Section A-A



Global behavior of the wavefunction

Consider a quasicrystalline patch of radius R. How much does the
scaling function f fluctuate inside the patch? More precisely,
what’s the difference of the value f (0) at the center of the patch
and the average value f̄ ? One can answer this question if the Hull
possesses an inflation symmetry M:

I If the center of the patch is
a fixpoint of Mp for some
finite p, then
f (0)− f̄ ∼ log |R|.

I Otherwise,
f (0)− f̄ ∼

√
log |R| This figure from Sutherland’s

paper depicts the typical behavior
of exp(f )



The blind spots
None of the wavefunctions of the ansatz can be big simultaneously
at the blue and at the red spots — hence the corresponding zones
are effectively electrically isolated from each other.

f

P(f)

1/2~log (R)

~log(R)

1

-3/2
2

The figure shows the distribution of the values of f and the
positions of the extremal spots on the atomic surface for the
octogonal Ammann tiling.



Generalizing the ansatz

Do we really need the closeness of the form ω? Actually, it suffices
that µ∗D(dω) = 0. One should therefore consider the cohomologies
H•(XD) of the quotient complex on Ω•‖(XD):

0→ Ω•⊥(XD)→ Ω•(XD)→ Ω•‖(XD)→ 0

where Ω•⊥(XD) consists of the forms vanishing under µ∗D .
Bad news: even in the case N = 2 and n = 1, the group H1

‖ (XD) is

infinetely generated (hint: the derivative map H1
‖ (XD)→ H2

⊥(XD)
is epi and has a non-zero kernel; in the same time ω 7→ ε⊥ ∧ ω
establishes an isomorphism between the two groups).
But we can always pick a reasonably looking cocycle and try!
What about guessing the eigenstates for the Fibonacci chain?



Fibonacci sequence

The transfer matrix
recursion:

Tn+1 = TnTn−1

yields the following
tracemap M:

x 7→ y

y 7→ z

z 7→ 2zy − x

with the invariant

J = x2+y2+z2−2xyz

Fixpoints of Mn correspond to a dense
subset of the spectrum of H

{x,y,z}(E)
This value of E belongs 
to the spectrum!



Fibonacci sequence

The sequence obtained by iterations is singular!
It corresponds to two distinct points in the hull.
Q: What happens with the “eigenstate” to the left of the origin?

The starting point

ABAABABAABA

BA

AB

BABAABA
Ite

ratio
ns go th

is w
ay



Fibonacci sequence
Consider the commutator

K = TnTn−1T
−1
n T−1

n−1

The iteration Tn+1 = TnTn−1 transforms K to K−1. Consider a
fixpoint of the order 2p of the tracemap

Tr(Tn+2p) = Tr(Tn)

For 2× 2 matrices this implies

Tn+2p = KαTnK
−α

for some real α. Therefore, the wavefunction started with the
eigenvector of K with the eigenvalue λ > 1 grows slower than all
others.
Thus, the effect of switching between two singular sequences is
that the eigenstate to the left of the origin is multiplied by λ —
this is exactly the way the ansatz should behave!



Fibonacci sequence — the ground state

Blue line corresponds to the ground state wave function ψ on the
canonical transverse. Green line represents ψ0.



Fibonacci sequence — some other state

The values of ψ and ψ0 on the canonical transverse for a state in
the middle of the spectrum (on the edge of a gap).



Conclusions

I The proposed ansatz provides the eigenstates for a subset of
perfect quasicrystalline potentials. It englobes both
quasi-Bloch and hierarchical solutions.

I The eigenstates are parametrized by Floquet multipliers
associated with the “worms” (lines or planes of “atoms ready
to jump”) in the singular patterns.

I If the set of eigenstates given by the proposed ansatz is
complete (and there are strong indications in favor of this
hypothesis), one of the consequences would be the presence of
the “blind spots” - small regions which are weakly electrically
connected to the bulk of the quasicrystal.


