When Periodicity Enforces Aperiodicity

Nicolas Bédaride & Thomas Fernique

Marseille, january 17th, 2013

Planar rhombus tilings

n pairwise non-colinear vectors of $\mathbb{R}^2 \rightsquigarrow \text{tilings of } \mathbb{R}^2$ by $\binom{n}{2}$ rhombi.

Planar rhombus tilings

Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.

Examples 000

Planar rhombus tilings

Planar: lift in $E + [0, t]^n$, where E is the *slope* and t the *thickness*.

Definition

Local rules

A slope E has *local rules* (LR) if there is a finite set of *patches* s. t. any rhombus tiling without any such patch is planar with slope E.

LR are said to be

- strong if the tilings satisfying them have thickness 1;
- *natural* if the thickness 1 tilings satisfy them;
- weak otherwise (the thickness is just bounded).

Mathieu's talk focused on weak LR. We here focus on natural LR.

Examples 000

Shadows and subperiods

Examples 000

Shadows and subperiods

Subperiod: shadow period (tiling); shadow rational vector (slope).

A Characterization

Theorem

A slope has natural LR iff finitely many slopes have its subperiods.

This result is moreover constructive (see examples hereafter).

A Characterization

Theorem

A slope has natural LR iff finitely many slopes have its subperiods.

This result is moreover constructive (see examples hereafter).

Slopes with natural LR must be algebraic (Le'95). Here, we refine:

Corollary

A slope with natural LR is generated by vectors defined over a number field of degree at most $\lfloor \frac{n}{2} \rfloor$. Degree $\lfloor \frac{\phi(n)}{2} \rfloor$ is reached.

Necessity (sketch)

Definition

The set of singular points of order k of E is $\operatorname{Sing}_k(E) := E + \mathbb{Z}_k^n$.

Lemma

 $Sing_k(E)$ cuts up the window into convex connected components corresponding to "size k" patches of slope E thickness 1 tilings.

Necessity (sketch)

Definition

The set of singular points of order k of E is $\operatorname{Sing}_k(E) := E + \mathbb{Z}_k^n$.

Lemma

 $Sing_k(E)$ cuts up the window into convex connected components corresponding to "size k" patches of slope E thickness 1 tilings.

Lemma

Subperiods characterize either finitely many slopes, or a continuum.

Lemma

Subperiod \Leftrightarrow intersection of boundaries of connected component.

Sufficiency (sketch)

Lemma

Subperiods can be enforced by forbidding finitely many patches.

Sufficiency (sketch)

Lemma

Subperiods can be enforced by forbidding finitely many patches.

Definition

A slope satisfies the *P*-condition if it contains three non-collinear vectors which project onto subperiods in three irrational shadows.

Lemma

P-condition \Leftrightarrow planarity of the tilings with the same subperiods.

Sufficiency (sketch)

Lemma

Subperiods can be enforced by forbidding finitely many patches.

Definition

A slope satisfies the *P*-condition if it contains three non-collinear vectors which project onto subperiods in three irrational shadows.

Lemma

P-condition \Leftrightarrow planarity of the tilings with the same subperiods.

Lemma

Subperiods characterize finitely many slopes \Rightarrow P-condition holds.

Grassmann-Plücker coordinates

Definition

The plane $\mathbb{R}\vec{u} + \mathbb{R}\vec{v}$ has GP-coordinates $(G_{ij})_{i < j} = (u_iv_j - u_jv_i)_{i < j}$.

Proposition (Grassmann-Plücker)

GP-coordinates satisfy all the relations $G_{ij}G_{kl} = G_{ik}G_{jl} - G_{il}G_{jk}$.

Proposition

Whenever a planar tiling admits $p\vec{e}_i + q\vec{e}_j + r\vec{e}_k$ as a subperiod, the GP-coordinates of its slope satisfy $pG_{jk} - qG_{ik} + rG_{ij} = 0$.

Main result 000 Examples

Generalized Penrose tilings

The slope has GP-coordinates $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.

Main result 000 Examples

Generalized Penrose tilings

The slope has GP-coordinates $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.

Main result 000 Examples

Generalized Penrose tilings

Subperiods yield $\begin{cases} G_{13} = G_{41} = G_{24} = G_{52} = G_{35} = 1\\ G_{12} = G_{51} = G_{45} = G_{34} = G_{23} =: x \end{cases}$

Generalized Penrose tilings

Plugged into the five GP-relations, this yields $x^2 = x + 1$.

Main result 000 Examples

Generalized Penrose tilings

Subperiods characterize finitely many slopes: the theorem applies!

Main result 000 Examples

Generalized Penrose tilings

Subperiods are easily enforced in each shadow by forbidden patches.

Main result 000 Examples

Generalized Penrose tilings

Main result 000 Examples ○●○

Generalized Penrose tilings

Main result 000 Examples ○●○

Generalized Penrose tilings

Main result 000 Examples ○●○

Generalized Penrose tilings

Main result 000 Examples

Generalized Penrose tilings

Main result 000 Examples ○●○

Generalized Penrose tilings

Considering all the shadows yields (simple) natural LR for the tilings.

Main result 000

Ammann-Beenker tilings

The slope has GP-coordinates $(1, \sqrt{2}, 1, 1, \sqrt{2}, 1)$.

Main result 000

Ammann-Beenker tilings

Subperiods yield $G_{12} = G_{14} = G_{23} = G_{34}$; GP-relation $G_{13}G_{24} = 2$.

Main result 000

Ammann-Beenker tilings

Main result 000

Ammann-Beenker tilings

Main result 000

Ammann-Beenker tilings

Main result 000

Ammann-Beenker tilings

Main result 000

Ammann-Beenker tilings

The theorem does not apply, but planarity is nevertheless enforced!

Main result 000

Ammann-Beenker tilings

Moreover, AB tilings are those maximizing the rhombus frequencies.

Thank you for your attention!