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Planar rhombus tilings

n pairwise non-colinear vectors of R2  tilings of R2 by
(n
2

)
rhombi.
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Planar rhombus tilings

Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.
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Planar rhombus tilings

Planar: lift in E + [0, t]n, where E is the slope and t the thickness.
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Local rules

Definition

A slope E has local rules (LR) if there is a finite set of patches s. t.
any rhombus tiling without any such patch is planar with slope E .

LR are said to be

strong if the tilings satisfying them have thickness 1;

natural if the thickness 1 tilings satisfy them;

weak otherwise (the thickness is just bounded).

Mathieu’s talk focused on weak LR. We here focus on natural LR.
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Shadows and subperiods

Shadow: projection on a space generated by three basis vectors.
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Shadows and subperiods

Subperiod: shadow period (tiling); shadow rational vector (slope).
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A Characterization

Theorem

A slope has natural LR iff finitely many slopes have its subperiods.

This result is moreover constructive (see examples hereafter).

Slopes with natural LR must be algebraic (Le’95). Here, we refine:

Corollary

A slope with natural LR is generated by vectors defined over a
number field of degree at most bn2c. Degree bφ(n)2 c is reached.
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Necessity (sketch)

Definition

The set of singular points of order k of E is Singk(E ) := E + Zn
k .

Lemma

Singk(E ) cuts up the window into convex connected components
corresponding to “size k” patches of slope E thickness 1 tilings.

Lemma

Subperiods characterize either finitely many slopes, or a continuum.

Lemma

Subperiod ⇔ intersection of boundaries of connected component.
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Sufficiency (sketch)

Lemma

Subperiods can be enforced by forbidding finitely many patches.

Definition

A slope satisfies the P-condition if it contains three non-collinear
vectors which project onto subperiods in three irrational shadows.

Lemma

P-condition ⇔ planarity of the tilings with the same subperiods.

Lemma

Subperiods characterize finitely many slopes ⇒ P-condition holds.
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Grassmann-Plücker coordinates

Definition

The plane R~u + R~v has GP-coordinates (Gij)i<j = (uivj − ujvi )i<j .

Proposition (Grassmann-Plücker)

GP-coordinates satisfy all the relations GijGkl = GikGjl − GilGjk .

Proposition

Whenever a planar tiling admits p~ei + q~ej + r~ek as a subperiod,
the GP-coordinates of its slope satisfy pGjk − qGik + rGij = 0.
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Generalized Penrose tilings

The slope has GP-coordinates (ϕ, 1,−1,−ϕ,ϕ, 1,−1, ϕ, 1, ϕ).
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Generalized Penrose tilings

Subperiods yield

{
G13 = G41 = G24 = G52 = G35 = 1
G12 = G51 = G45 = G34 = G23 =: x
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Generalized Penrose tilings

Plugged into the five GP-relations, this yields x2 = x + 1.
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Generalized Penrose tilings

Subperiods characterize finitely many slopes: the theorem applies!
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Generalized Penrose tilings

Subperiods are easily enforced in each shadow by forbidden patches.
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Generalized Penrose tilings

This still holds in the tilings, at least in those of thickness 1.
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Generalized Penrose tilings

Considering all the shadows yields (simple) natural LR for the tilings.
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Ammann-Beenker tilings

The slope has GP-coordinates (1,
√

2, 1, 1,
√

2, 1).
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Ammann-Beenker tilings

Subperiods yield G12 = G14 = G23 = G34; GP-relation G13G24 = 2.
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Ammann-Beenker tilings

Subperiods thus characterize all the slopes (1, t, 1, 1, 2/t, 1), t ∈ R.
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Ammann-Beenker tilings

The theorem does not apply, but planarity is nevertheless enforced!
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Ammann-Beenker tilings

Moreover, AB tilings are those maximizing the rhombus frequencies.



Thank you for your attention!
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